Comparative Study of 8T SRAM Cell using CMOS, FinFET and CNTFET in Nanoscale Technologies

نویسندگان

  • Dr. Sharmila
  • Meenakshi
چکیده

In the world of Integrated Circuits, Complementary Metal–Oxide– Semiconductor (CMOS) has lost its credentiality during scaling beyond 32nm. Scaling causes severe Short Channel Effects (SCE) which are difficult to suppress. As a result of such SCE many alternate devices have been studied. Some of the major contestants include Multi Gate Field Effect Transistor (MuGFET) like FinFET and Carbon Nano Tube Field Effect Transistor (CNTFET). In this paper, 8T SRAM cell is analyzed in CMOS, FinFET and CNTFET structures and their performances like standby power Consumption and static noise margin are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of 5-T SRAM Cell in 32nm CMOS and CNTFET Technologies

MOS transistor play a vital role in today VLSI technology. In CMOS based design, symmetry should be followed in circuit operation. Most of the complex circuits are allowed to design in CMOS, however, there are several drawbacks present in this complementary based design. CMOS has lost its credentiality during scaling beyond 32nm. Scaling down causes severe short channel effects which are diffic...

متن کامل

12th Int'l Symposium on Quality Electronic Design

Bias Temperature Instability (BTI) causes significant threshold voltage shift in MOSFET using Hafnium-dioxide (HfO2) High-k dielectric material. Negative BTI and Positive BTI are two types of BTI effects observed in p-channel and n-channel MOSFET. BTI affects the stability and reliability of conventional six transistor (6T) SRAM design in nano-scale CMOS technology. Eight transistor (8T) and Te...

متن کامل

Finfet Based Sram Design for Low Power Applications

Industry demands Low-Power and HighPerformance devices now-a-days. Among the various embedded memory technologies, SRAM provides the highest performance along with low standby power consumption. In CMOS circuits, high leakage current in deep-submicron regimes is becoming a significant contributor to power dissipation due to reduction in threshold voltage, channel length, and gate oxide thicknes...

متن کامل

New SRAM Cell Design for Low Power and High Reliability using 32nm Independent Gate FinFET Technology

This paper proposes new methods for SRAM cell design in FinFET technology. One of the most important features of FinFET is that the independent front and back gates can be biased differently to control the current and the device threshold voltage. By controlling the back gate voltage of a FinFET, a SRAM cell can be designed for low power consumption. This paper proposes a new 8T (8 transistors)...

متن کامل

Independent Gate Finfet Sram Cell Using Leakage Reduction Techniques

1 Research Scholar of Sagar Institute of Research & Technology, Bhopal, Madhya Pradesh, India 2 Professor, Dept. of Electronics and Communication, Sagar Institute of Research & Technology, Bhopal, Madhya Pradesh, India. __________________________________________________________________________________________ Abstract: Scaling of devices in bulk CMOS technology contributes to short channel effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013